Recent progress in the treatment of lower risk MDS

Pierre Fenaux

Département d'hématologie et immunologie Hôpitaux St

Louis, R Debré, Avicenne

Université de Paris

GFM

Hematological Diseases (ERN EuroBloodNet)

Recent treatments of lower risk MDS

- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk
 MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders

Recent treatments of lower risk MDS

- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk
 MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders

IPSS-R

Table 3. If 55-K I Toghostic Score Values							
Prognostic	0	0.5	1	1.5	2	3	4
variable							
Cytogenetics	Very		Good		Intermed-	Poor	Very
	Good				iate		Poor
BM Blast %	≤2		>2-<5%		5-10%	>10%	
Hemoglobin	≥10		8-<10	<8			
Platelets	≥100	50-	<50				
		<100					
ANC	≥0.8	<0.8					

Table 4. IPSS-R Prognostic Risk Categories/Scores

RISK GROUP	RISK SCORE
Very Low	≤1.5
Low	>1.5-3
Intermediate	>3-4.5
High	>4.5-6
Very High	>6

Treatment Objectives

- Higher risk MDS
 - IPSS intermediate-2 or high or R-IPSS very high, high and intermediate (> 3.5)
 - Delay disease progression
 - Prolong survival
- Lower risk MDS
 - IPSS low or intermediate-1or R-IPSS very low, low , int <4
 - Improve blood cytopenias (mainly anemia)
 - Improve quality of life

Somatic mutations in MDS: 85-90% of the patients

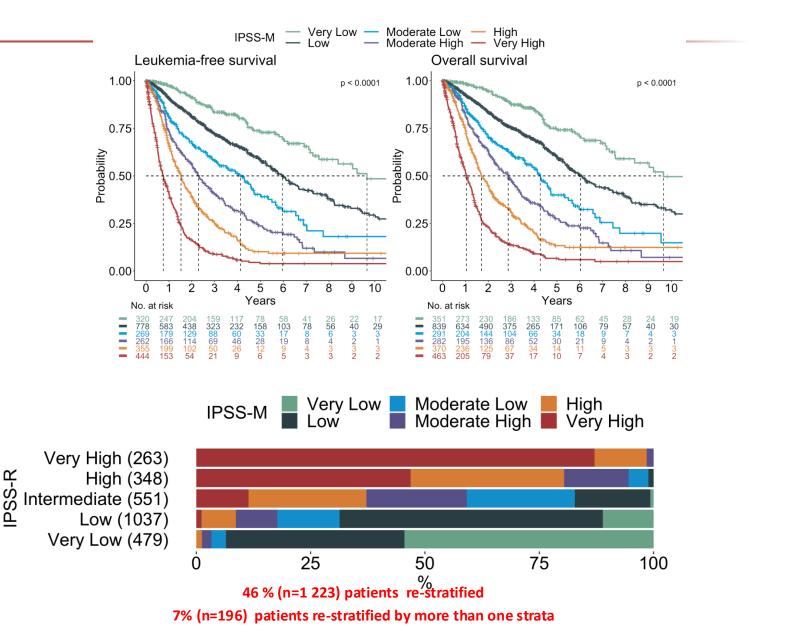
- splicing factors SF3B1, SRSF2
- Methylation: DNMT3a, TET2, IDH1/2
- Chromatin modification: ASXL1,EZH 2
- TP53, RAS,RUNX 1
- Rare:
 - NPM1, FLT3
 - JAK2, CALR, MPL

IPSS-M

Category	Variable		Multivariable model: hazard ratio* (95% CI)		Scaling x ^{mean}
confounder	y № Age, in years	+	1.23 (1.05 - 1.43)	N/A	N/A
	Sex:Male	+	1.22 (1.06 - 1.41)	N/A	N/A
	Type:Secondary/Therapy-related	+	1.36 (1.10 - 1.68)	N/A	N/A
clinical	% Bone Marrow Blasts, in %	•	1.42 (1.30 - 1.55)	0.352	0.922
	‱ min(Platelets,250), in x10 ⁹ /L		0.80 (0.72 - 0.89)	-0.222	1.41
	Hemoglobin, in g/dL	+	0.84 (0.81 - 0.88)	-0.171	9.87
cytogenetics	IPSS-R category vector ^{&}	-	1.33 (1.21 - 1.47)	0.287	1.390
gene main effects	TP53 ^{multi}	-	3.27 (2.38 - 4.48)	1.18	0.0710
17 variables, 16 genes	MLLPTD		2.22 (1.49 - 3.32)	0.798	0.0247
	FLT3 ^{ITD+TKD}		2.22 (1.11 - 4.45)	0.798	0.0108
	SF3B1 ^{5q}		1.66 (1.03 - 2.66)	0.504	0.0166
	NPM1		1.54 (0.78 - 3.02)	0.430	0.0112
	RUNX1	-	1.53 (1.23 - 1.89)	0.423	0.126
	NRAS		1.52 (1.05 - 2.20)	0.417	0.0362
	ETV6	-	1.48 (0.98 - 2.23)	0.391	0.0216
	IDH2	-	1.46 (1.05 - 2.02)	0.379	0.0429
	CBL	-	1.34 (0.99 - 1.82)	0.295	0.0473
	EZH2	-	1.31 (0.98 - 1.75)	0.270	0.0588
	U2AF1	+	1.28 (1.01 - 1.61)	0.247	0.0866
	SRSF2	-	1.27 (1.03 - 1.56)	0.239	0.158
	DNMT3A	+	1.25 (1.02 - 1.53)	0.221	0.161
	ASXL1		1.24 (1.02 - 1.51)	0.213	0.252
	KRAS		1.22 (0.84 - 1.77)	0.202	0.0271
	SF3B1 ^a	+	0.92 (0.74 - 1.16)	-0.0794	0.186
gene residuals [§]	min(Nres,2)		1.26 (1.12 - 1.42)	0.231	0.388
1 variable, 15 genes	Possible values are 0,1 or 2	0.5 1 2 3 5			

Hematological parameters as continuous variables

IPSS-R cytogenetic categories,

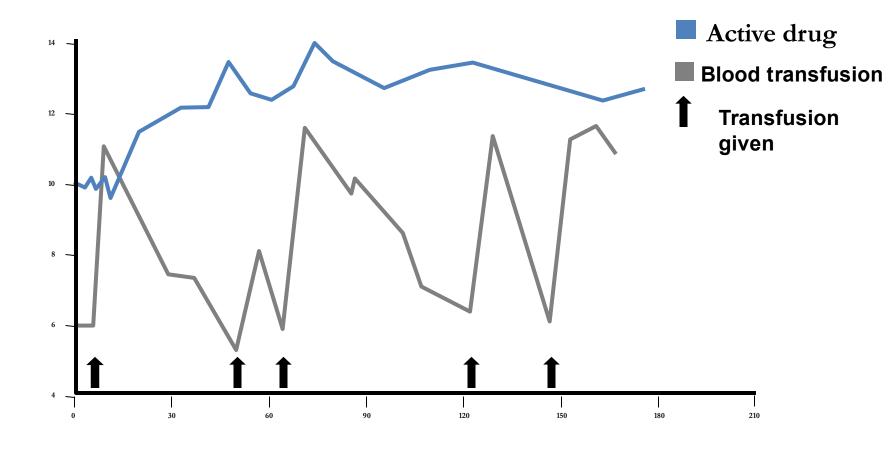

17 Variables from 16 genes

1 Variable from <u>15 residual genes</u> ^ Number of mutated genes (0, 1 ou 2)

gènes résiduels : BCOR, BCORL1, CEBPA, ETNK1, GATA2, GNB1, IDH1, NF1, PHF6, PPM1D, PRPF8, PTPN11, SETBP1, STAG2, WT1

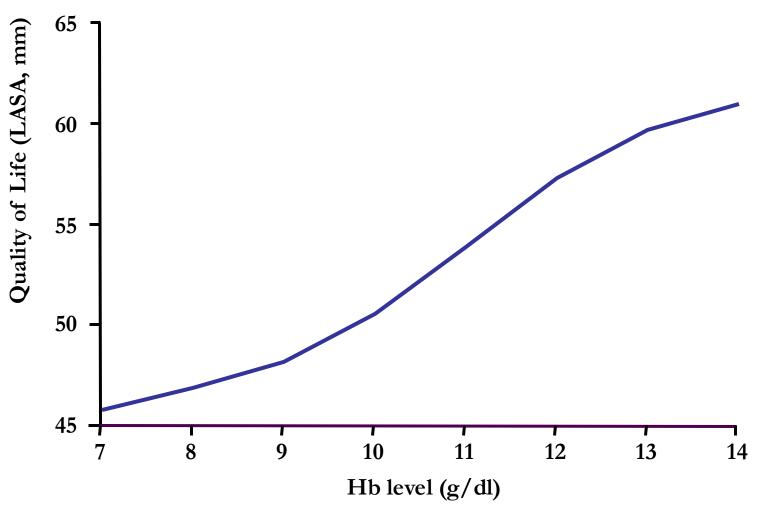
Elsa Bernard et al. ASH 2021

IPSS-M risk categories Very low | low | low moderate | high moderate | high | very high



Mutations with largest clinical significance in MDS

- SF3B1
 - Alone of with «favorable » mutations (TET2...)
 - With unfavorable mutations (RUNX1....)
- TP53
 - Biallelic: complex karyotype with del 17p, del 5q
 - Monoallelic (non complex karyotype)
 - Isolated del 5q
 - others
- IDH1
- IDH2
- (FLT3, NPM1)


Recent treatments of lower risk MDS

- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk
 MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders

Days of treatment

Quality of Life is correlated to Hb levels

LASA: Linear Analog Scale Assessment

Crawford et al. Cancer 2002; 95: 888-95

Treatments of lower risk MDS: How to prevent anemia recurrence?

- First line treatment
 - ESAs (EPO and darbepoetin) (non del 5q)
 - 50% responses
 - Median duration 20 to 24 months
 - Lenalidomide (del 5q)
 - 65% transfusion independence
 - 50% complete cytogenetic response
 - Median duration 2.2 years

Treatments of lower risk MDS: How to prevent anemia recurrence?

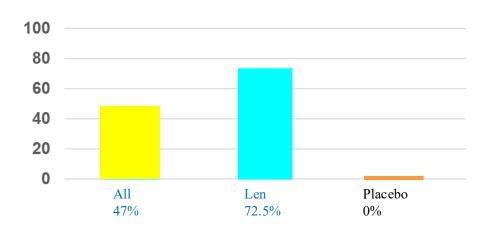
- Second line treatments
 - Immunosuppressive drugs
 - 40% response rate
 - Selected population
 - Lenalidomide (non del 5q)
 - 25-30% transfusion independence
 - Median duration 35-40 weeks
 - Hypomethylating agents
 - 20-30% response

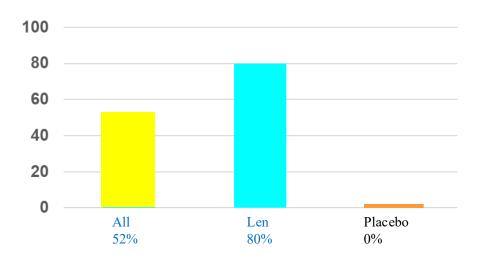
Early start of LEN in MDS with del 5q?

SINTRA — REV trial (M Diez Campelo, ASH 2020 and ASH 2022)

Patients with Hb <12g, no RBC TD

randomized between LEN (5mg/d) or placebo

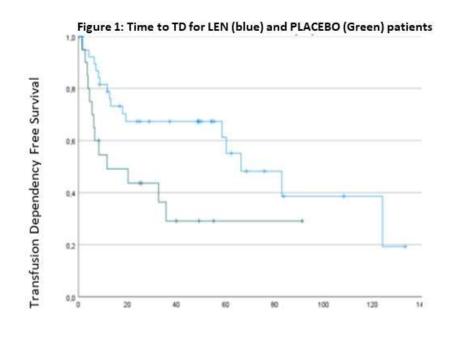



Sintra-Rev Clinical Trial

Low doses of Len improved Erythroid and Cytogenetic responses

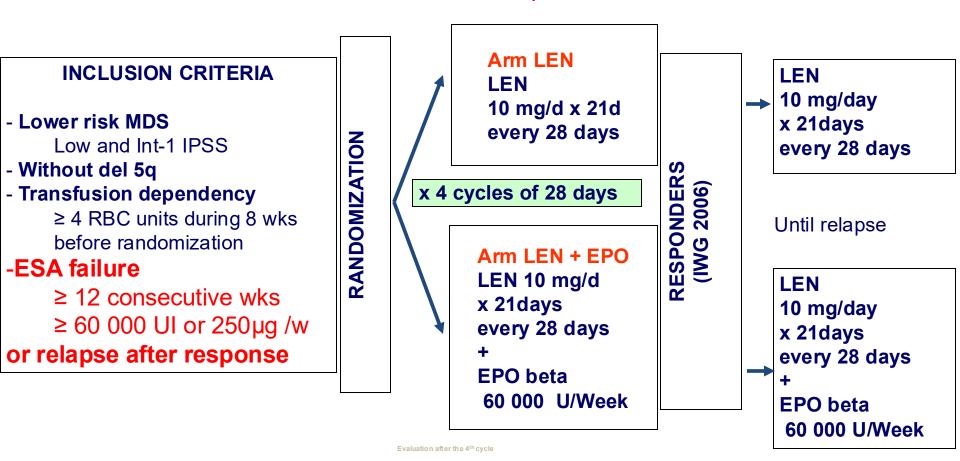
✓ Erythroid Response

✓ Cytogenetic Response



Sintra-Rev Clinical Trial

Low doses of Len delayed and decreased transfusion dependency


Median time to Transfusion Dependency (median 66.3 vs 11.6 months)

Time (months)

LEN+ EPO in lower risk MDS without del 5q

Erythroid response and RBC-TI

(patients who received >= 4 cycles n= 99)

	LEN + EPO N = 50	LEN N = 49	
Erythroid response (IWG 2006)	52%	30.6%	RR = 1.7 p= 0.03

New drugs for anemia of non del 5q lower risk MDS

- Metapivat/etavopivat
- Spliceosome inhibitors
- Imetelstat (telomerase inhibitor)
- Daratumumab (CD 38 inhibitor)
- Fc enginered antibody BI 836858 (MDSC inhibition)
- Inhibition of the NLRP3 inflammasome (including of S 100A9)
- TLR inhibition
- HIF hydroxylase inhibitors (Roxadustat)
- Asunercept (blockade of the CD 95 ligand system)
- IDH1 and IDH2 inhibitors
- Luspatercept (ligand trap to inhibit negative regulators of late-stage erythropoiesis, including GDF11 and activin B)

RESEARCH ARTICLE

Roxadustat for the treatment of anemia in patients with lower-risk myelodysplastic syndrome: Open-label, dose-selection, lead-in stage of a phase 3 study

```
David H. Henry<sup>1</sup> | John Glaspy<sup>2</sup> | Rosemary Harrup<sup>3</sup> | Moshe Mittelman<sup>4</sup> |
Amy Zhou<sup>5</sup> | Hetty E. Carraway<sup>6</sup> | Charles Bradley<sup>7</sup> | Gopal Saha<sup>7</sup> |
Katharina Modelska<sup>7</sup> | Pamela Bartels<sup>7</sup> | Robert Leong<sup>7</sup> | Kin-Hung P. Yu<sup>7</sup>
```

- HIF hydroxylase inhibitor
- Lower risk MDS with sEPO<400 and low RBC transfusion requirement
- N=24, TI in 9 (37.5%)
- No major side effects

Imetelstat Achieves Meaningful and Durable Transfusion Independence in High Transfusion—Burden Patients With Lower-Risk Myelodysplastic Syndromes in a Phase II Study

David P. Steensma, MD¹; Pierre Fenaux, MD, PhD²; Koen Van Eygen, MD³; Azra Raza, MD⁴; Valeria Santini, MD⁵; Ulrich Germing, MD, PhD⁶; Patricia Font, MD⁷; Maria Diez-Campelo, MD, PhD⁶; Sylvain Thepot, MD⁶; Edo Vellenga, MD, PhD¹⁰; Mrinal M. Patnaik, MBBS¹¹; Jun Ho Jang, MD¹²; Helen Varsos, MS, RPh¹³; Jacqueline Bussolari, PhD¹³; Esther Rose, MD¹³; Laurie Sherman, RN¹⁴; Libo Sun, PhD¹⁴; Ying Wan, MD, PhD¹⁴; Souria Dougherty, BS, MBA¹⁴; Fei Huang, PhD¹⁴; Faye Feller, MD¹⁴; Aleksandra Rizo, MD, PhD¹⁴; and Uwe Platzbecker, MD¹⁵

- N=38
- 63% of patients IPSS Low and 37% Int-1
- Median RBC transfusion requirement 8 units/8weeks

Parameters	n = 38
8-week TI, n (%)	16 (42%)
Duration of TI ^a , weeks, median (range)	85.9 (8.0 – 140.9)
24-week TI, n (%)	11 (29)
HI-E per IWG 2006, n (%)	26 (68)

IMerge: Results From a Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Imetelstat in Patients With Heavily Transfusion Dependent Non-Del(5q) Lower-Risk Myelodysplastic Syndromes Relapsed/Refractory to Erythropoiesis Stimulating Agents

Amer Zeidan, MBBS MHS,¹ Uwe Platzbecker, MD,² Valeria Santini, MD,³ Pierre Fenaux, MD, PhD,⁴ Mikkael A. Sekeres, MD,⁵ Michael Robert Savona, MD,⁶ Yazan F. Madanat, MD,⁷ Maria Diez-Campelo, MD, PhD,⁸ David Valcarcel-Ferreiras, MD, PhD,⁹ Thomas Ilmer, MD,¹⁰ Anna Jonasova, PhD,¹¹ Petra Belohlavkova, PhD,¹² Laurie Sherman, BSN,¹³ Tymara Berry, MD,¹³ Souria Dougherty, MBA,¹³ Sheetal Shah, BS,¹³ Libo Sun, PhD,¹³ Ying Wan, MD, PhD,¹³ Fei Huang, PhD,¹³ and Rami Komrokji, MD¹⁴

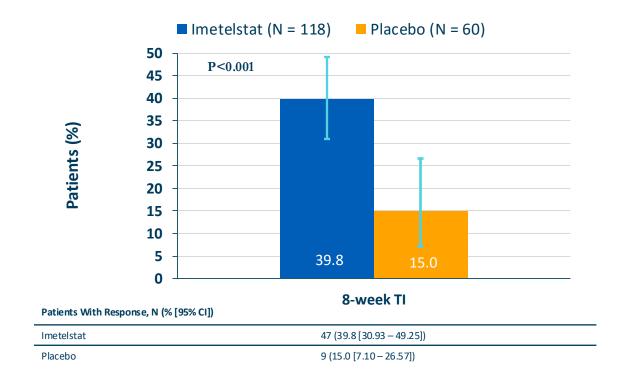
¹Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA; ²Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; ³MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Italy; ⁴Service d'Hématologie Séniors, Hôpital Saint-Louis, Université de Paris 7, Paris, France; ⁵Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; ⁶Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; ⁷Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁸Hematology Department, The University Hospital of Salamanca, Salamanca, Spain; ⁹Hematology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain; ¹⁰Hematology, Private Practice, Dresden, Germany; ¹¹Ist Medical Department - Hematology, General Hospital, Prague, Czech Republic; ¹²4th Department of Internal Medicine - Haematology, Charles University Hospital, Hradec Kralove, Czech Republic; ¹³Geron Corporation, Foster City, CA, USA; ¹⁴Moffitt Cancer Center, Tampa, FL, USA

Phase 3 **Imetelstat Primary End Point:** Double blind, randomized 7.5mg/kg IV / 4 weeks 8-week RBC Transfusion 118 clinical sites in 17 countries Independence (TI)b (N = 118)**Key Secondary End** Patient Population (ITT N = 178): Stratification: Points: IPSS Low- or Intermediate 1- Risk MDS Transfusion burden (4 - 6 vs. > 6 units) 24-week RBC TI^b Relapsed/Refractory to ESA or EPO IPSS risk category (Low vs. Intermediate-1) **Duration of TI** >500 mU/ml (ESA Ineligible) D Supportive care, including RBC and platelet transfusions Hematologic myeloid growth factors (e.g., G-CSF), and iron chelation **Transfusion dependent: ≥4 units** 0 Improvement-Erythroid 2:1 therapy administered as needed on study per RBCs / 8 weeks over 16-week pre-М investigator discretion (HI-E) study Non-deletion 5a Z **Key Exploratory End** No prior treatment with lenalidomide Ē Placebo Point: or HMAs VAF changes ^a Received at least 8 weeks of ESA treatment (epoetin alfa ≥40,000 U, epoetin beta ≥30,000 U ordarbepoetin alfa 150 mcg or equivalent per week) without Hgb rise ≥1.5 g/dL or decreased RBC transfusion requirement ≥ 4 units/8 weeks or transfusion ^bProportion of patients without any RBC Safety population (treated) N = transfusion for at least eight consecutive

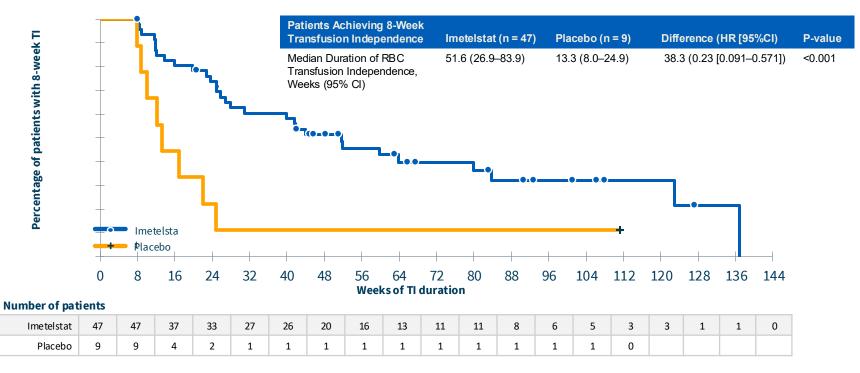
dependence or reduction in Hgb by ≥1.5 g/dL after hematologic

improvement from ≥8 weeks of ESA treatment.

weeks since entry to the trial (8-week TI); proportion of patients without any RBC transfusion for at least 24 consecutive weeks since entry to the trial (24-week TI)


Imetelstat N = 118

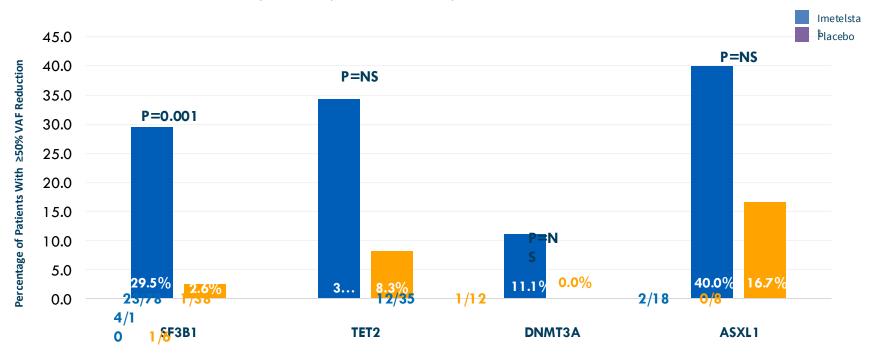
Placebo N = 59


Baseline Patient and Disease

Characteristic	lmetelstat (N = 118)	Placebo (N = 60)
Median age, y (range)	72 (44-87)	73 (39-85)
Male, n (%)	71 (60)	40 (66)
Median time since diagnosis, y (range)	3.5 (0.1-26.7)	2.8 (0.2-25.7)
WHO classification, n (%) RS+ RS-	73 (62) 44 (37)	37 (62) 23 (38)
IPSS risk category n (%) Low Intermediate-1	80 (68) 38 (32)	39 (65) 21 (35)
Median pretreatment hemoglobin, a g/dL (range)	7.92 (5.3-10.1)	7.80 (6.1-9.2)
Median prior RBC transfusion burden, RBC units / 8 weeks (range)	6 (4-33)	6 (4-13)
Prior RBC transfusion burden, n (%) ≥4 to ≤6 units / 8 weeks >6 units / 8 weeks	62 (53) 56 (48)	33 (55) 27 (45)
Median sEPO, mU/mL (range)	174.9 (6.0-4460.0)	277.0 (16.9-5514.0)
sEPO level, n (%) ≤500 mU/mL >500 mU/mL	87 (74) 26 (22)	36 (60) 22 (37)
Prior erythropoiesis stimulating agents use, n (%)	108 (92)	52 (87)
Prior luspatercept use, ^b n (%)	7 (6)	4 (7)

Primary End Point: 8-Week RBC TI Rate Significantly Higher With Imetelstat vs Placebo Overall

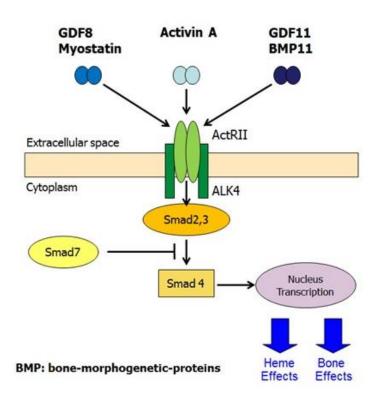
Imetelstat 8-Week RBC-TI Responders Have Significantly Longer Duration of Transfusion Independence vs Placebo

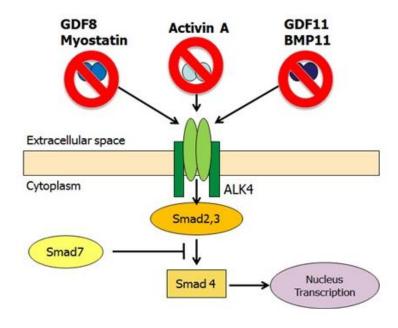


Consistent with Prior Clinical Experience, the Most Common SAEs Were Cytopenias in Cycles 1 – 3

- No new safety signals were observed
- Non-hematologic AEs were generally low grade
- The most frequent AEs with imetelstat were thrombocytopenia and neutropenia
 - A majority of patients with Grade 3-4 thrombocytopenia and neutropenia experienced them during Cycles 1-3
- No cases of Hy's Law or drug-induced liver injury observed
 - The incidence of grade 3 liver function test abnormalities were similar in both treatment groups

	Imetelstat (N	= 118)	Placebo (N = 59)			
AE, n (%)	Any Grade	Grade 3 – 4	Any Grade	Grade 3 – 4		
Hematologic						
Thrombocytopenia	89 (75)	73 (62)	6 (10)	5 (8)		
Neutropenia	87 (74)	80 (68)	4 (7)	2 (3)		
Anemia	24 (20)	23 (19)	6 (10)	4 (7)		
Leukopenia	12 (10)	9 (8)	1 (2)	0		
Other						
Asthenia	22 (19)	0	8 (14)	0		
Edema peripheral	13 (11)	0	8 (14)	0		
Pyrexia	9 (8)	2 (2)	7 (12)	0		
COVID-19	22 (19) ^c	2 (2) ^d	8 (14) ^c	3 (5) ^d		
Diarrhea	14 (12)	1 (1)	7 (12)	1 (2)		
Constipation	9 (8)	0	7 (12)	0		
Headache	15 (13)	1 (1)	3 (5)	0		
Hyperbilirubinemia	11 (9)	1 (1)	6 (10)	1 (2)		
Investigation: ALT increased ^a	14 (12)	3 (3)	4 (7)	2 (3)		

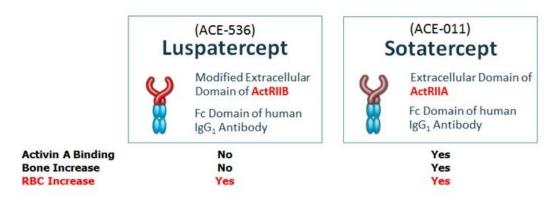

More Patients With Imetelstat vs Placebo Had ≥50% VAF Decrease in *SF3B1, TET2, DNMT3A, ASXL1* Mutations



TGF beta inhibition

a. Activin receptor II (ActRII) pathway

b. Activin receptor II (ActRII) pathway inhibition



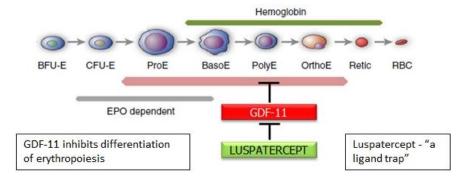
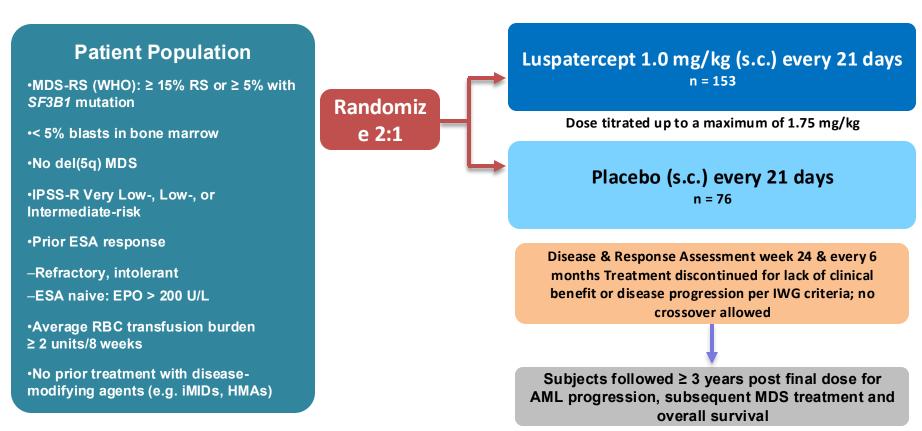

Luspatercept

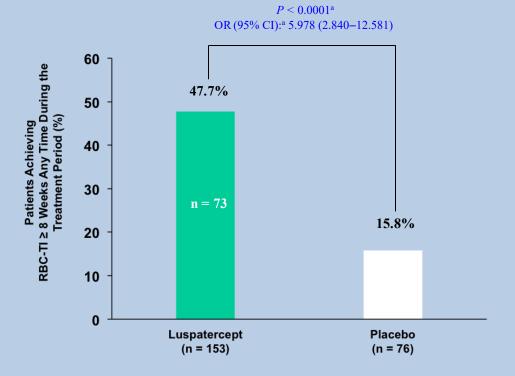
Figure 2:


a. Structure of Luspatercept and Sotatercept

b. Mechanism of action of Luspatercept

MEDALIST Trial Study Design – A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study

Data cutoff: May 8, 2018 Includes last subject randomized + 48 weeks.

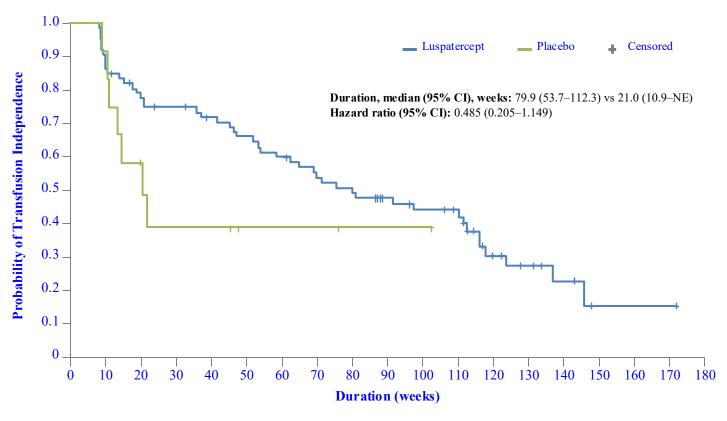

EPO, erythropoietin; HMA, hypomethylating agent; iMID, immunomodulatory drug; IWG, International Working Group; s.c., subcutaneously; SF3B1, splicing factor 3b subunit 1;

WHO, World Health Organization.

MEDALIST Trial

A Randomized, Phase 3 Study of Luspatercept in MDS RS

RBC-TI ≥ 8 weeks Achieved any time during treatment period



• Primary endpoint previously reported: 37.9% luspatercept versus 13.2% placebo patients achieved RBC-TI \geq 8 weeks during Weeks 1–24 (P < 0.0001)¹

RBC-TI ≥ 8 weeks by baseline transfusion burden

RBC-TI ≥ 8 Weeks Over the Entire Treatment	Luspatercept	Placebo	Luspatercept Minus Placebo	
Period	(n = 153)	(n = 76)	OR (95%CI) ^a	<i>P</i> Value ^a
Average baseline RBC transfusion requirement, n/N (%)				
≥ 6 U/8 weeks	14/66 (21.2)	2/33 (6.1)	4.17 (0.89–19.60)	0.0547
≥ 4 to < 6 U/8 weeks	20/41 (48.8)	2/23 (8.7)	10.00 (2.07– 48.28)	0.0013
< 4 U/8 weeks	39/46 (84.8)	8/20 (40.0)	8.36 (2.51–27.83)	0.0002

Cumulative Duration of RBc-ti ≥ 8 weeks^a IN ALL RESPONDERS

Number of patients^b

a Cumulative duration of RBC-TI \geq 8 weeks is defined as the sum of all durations of RBC-TI for patients a chieving RBC-TI \geq 8 weeks during the entire treatment phase.

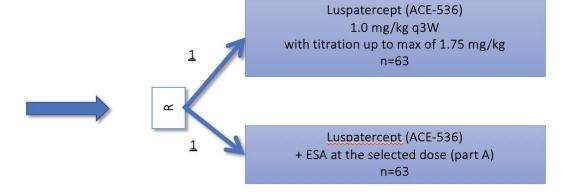
^b In the intent-to-treat population; patients who maintained response were censored from the analysis.

SAFETY

Disease progression

Summary of Disease Progression, n (%)	Luspatercept (n = 153)	Placebo (n = 76)
Progression to HR-MDS or AML	8 (5.2)	4 (5.3)
HR-MDS	5 (3.3)	2 (2.6)
AML	3 (2.0)	2 (2.6)

Perspectives with Luspatercept


- Combinations with
 - EPO
 - Lenalidomide
- Use en MDS without ring cells
 - Commands trial (Luspa vs EPO)
 - Combola trial

Luspa+/- EPO: Combola Trial (LAdès)

- Patients with lower risk MDS according to IPSS classification (LOW, INT-1) without RS
- failed to achieved a response or who subsequently relapse after ESA (at least 60000 U EPO-a over at least 12weeks or equivalent), without disease progression (Or ineligible to ESA defined by EPO > 500 UI/I)
- Hemogobin < 9 gr/dl or Transfusion dependant(at least 3 RBCs
- No del(5q) MDS

1º Endpoint: transfusion independence for TD dependent patients and hematological improvement For non TD dependent patient at W25

Luspatercept versus epoetin alfa for treatment of anemia in ESAnaive lower-risk myelodysplastic syndromes patients requiring RBC transfusions:

data from the phase 3 COMMANDS study

Matteo Giovanni Della Porta,^{1,2} Uwe Platzbecker,³ Valeria Santini,⁴ Amer M. Zeidan,⁵ Pierre Fenaux,⁶ Rami S. Komrokji,⁷ Jake Shortt,⁸ David Valcarcel,⁹ Anna Jonasova,¹⁰ Sophie Dimicoli-Salazar,¹¹ Ing Soo Tiong,¹² Chien-Chin Lin,¹³ Jiahui Li,¹⁴ Jennie Zhang,¹⁴ Ana Carolina Giuseppi,¹⁴ Sandra Kreitz,¹⁵ Veronika Pozharskaya,¹⁴ Karen L. Keeperman,¹⁴ Shelonitda Rose,¹⁴ Jeevan K. Shetty,^{15*} Sheida Hayati,¹⁴ Sadanand Vodala,¹⁴ Andrius Degulys,^{16,17} Stefania Paolini,¹⁸ Thomas Cluzeau,¹⁹ Guillermo Garcia-Manero²⁰

¹Cancer Center IRCCS Humanitas Research Hospital, Milan, Italy; ²Department of Biomedical Sciences, Humanitas University, Milan, Italy; ³Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany; ⁴MDS Unit, Hematology, University of Florence, AOUC, Florence, Italy; ⁵Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, Yale University, New Haven, CT; ⁶Service d'Hématologie Séniors, Hôpital Saint-Louis, Université Paris 7, Paris, France; ⁷Moffitt Cancer Center, Tampa, FL; ⁸Monash University and Monash Health, Melbourne, VIC, Australia; ⁹Hospital Universitari Vall d'Hebron, Barcelona, Spain; ¹⁰Medical Department Hematology, Charles University General University Hospital, Prague, Czech Republic; ¹¹Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; ¹²Malignant Haematology & Stem Cell Transplantation, The Alfred, Melbourne, Victoria, Australia; ¹³Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹⁴Bristol Myers Squibb, Princeton, NJ; ¹⁵Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland; ¹⁶Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania; ¹⁷Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; ¹⁸IRCCS University Hospital of Bologna, "Seràgnoli" Institute of Hematology, Bologna, Italy, Italy; ¹⁹Départment d'Hématologie Clinique, Université Cote d'Azur, CHU Nice, Nice, France; ²⁰Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.

*At the time of the study

Presentation number S102

The COMMANDS study

The COMMANDS study (NCT03682536) is a phase 3, global, open-label, randomized trial comparing the efficacy and safety of luspatercept versus epoetin alfa for the treatment of anemia due to IPSS-R LR-MDS in ESA-naive patients who require RBC transfusions

Key eligibility criteria

- ≥ 18 years of age
- IPSS-R very low-, low, or intermediate-risk MDS (with or without RS) by WHO 2016, with < 5% blasts in bone marrow^a
- Required RBC transfusions (2–6 pRBC units/8 weeks for a minimum of 8 weeks immediately prior to randomization)
- Endogenous sEPO < 500 U/L
- ESA-naive

Patients stratified by:

- Baseline sEPO level
- Baseline RBC transfusion burden
- RS status

Luspatercept (N = 178) 1.0 mg/kg s.c. Q3W titration up to 1.75 mg/kg

Randomize

1¢1

Epoetin alfa (N = 178)^b 450 IU/kg s.c. QW titration up to 1050 IU/kg Response assessment at day 169 and every 24 weeks thereafter

End treatment

Due to lack of clinical benefit^c

or disease progression

per IWG criteria

Post-treatment safety follow-up

- Monitoring for other malignancies, HR-MDS or AML progression, subsequent therapies, survival
- For 5 years from first dose or 3 years from last dose, whichever is later

aMDS with del(5q) were excluded. b2 patients randomized to the epoetin alfa arm withdrew consent prior to receiving their first dose; Clinical benefit defined as transfusion reduction of ≥ 2 pRBC units/8 weeks versus baseline; AML, acute myeloid leukemia; ESA, erythropoiesis-stimulating agent; IPSS-R, Revised International Prognostic Scoring System; IWG, International Working Group; LR-MDS, lower-risk MDS; MDS, myelodysplastic syndromes; pRBC, packed RBC; QW, once weekly; Q3W, every 3 weeks; RBC, red blood cell; RS, ring sideroblasts; s.c., subcutaneously; sEPO, serum erythropoietin; WHO, World Health Organization.

Study endpoints

Composite primary endpoint (weeks 1-24)

RBC-TI for ≥ 12 weeks
 <u>WITH CONCURRENT</u>
 mean hemoglobin
 increase ≥ 1.5 g/dL

Secondary endpoints (weeks 1-24)

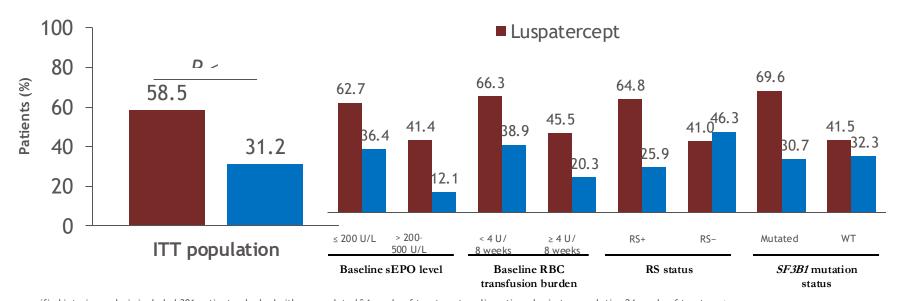
- HI-E response ≥ 8 weeks per IWG criteria
- RBC-TI for 24 weeks
- RBC-TI for ≥ 12 weeks

The data cutoff date for this planned interim analysis was August 31, 2022

 This prespecified interim analysis was planned for when ~300 patients had either completed 24 weeks of treatment or discontinued prior to completing 24 weeks of treatment (at 85% of information for the primary endpoint)

Secondary and exploratory endpoints

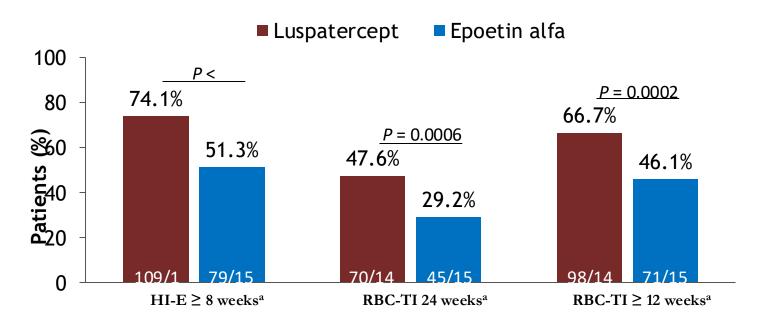
- Duration of RBC-TI for
 ≥ 12 weeks (week 1-EOT)
- Impact of baseline mutations on response
- Subgroup analyses


Safety

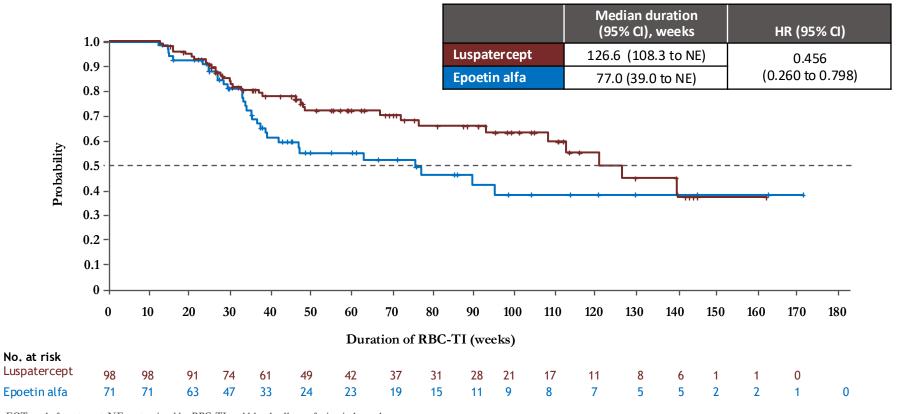
- Treatment discontinuation
- TEAE
- HR-MDS/AML progression
- Death

HI-E, hematological improvement-erythroid; RBC-TI, RBC transfusion independence; TEAE, treatment-emergent adverse event.

Primary endpoint: luspatercept superior to epoetin alfa


- Of 301 pts included in the efficacy analysis, 86 (58.5%) patients receiving luspatercept and 48 (31.2%) epoetin alfa achieved the primary endpoint
 - Achievement of the primary endpoint favored luspatercept or was similar to epoetin alfa for all subgroups analyzed

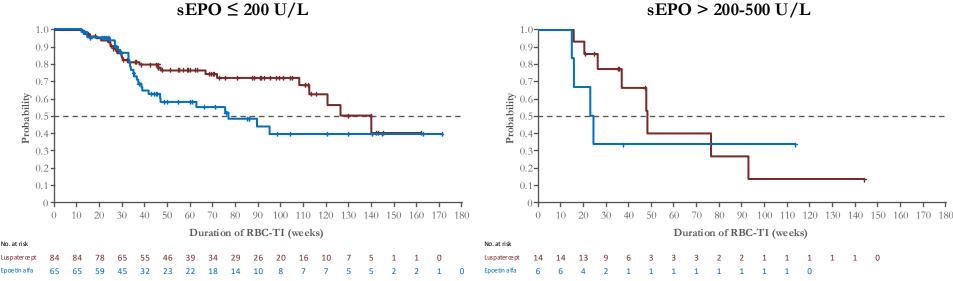
This prespecified interim analysis included 301 patients who had either completed 2.4 weeks of treatment or discontinued prior to completing 24 weeks of treatment.


Secondary endpoints: luspatercept superior to epoetin alfa

	Luspatercept (N = 147)	Epoetin alfa (N = 154)
Time to first RBC transfusion (week 1-EOT)	n = 93	n = 116
	168.0 (64.0–323.0)	42.0 (22.0–55.0)

^aDuring weeks 1-24.

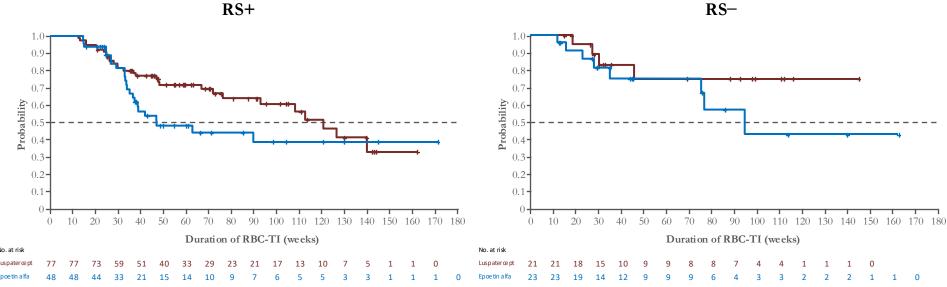
Duration of RBC-TI ≥ 12 weeks^a



EOT, end of treatment; NE, not estimable; RBC-TI, red blood cell transfusion independence.

^aIn ITT responders during weeks 1-EOT.

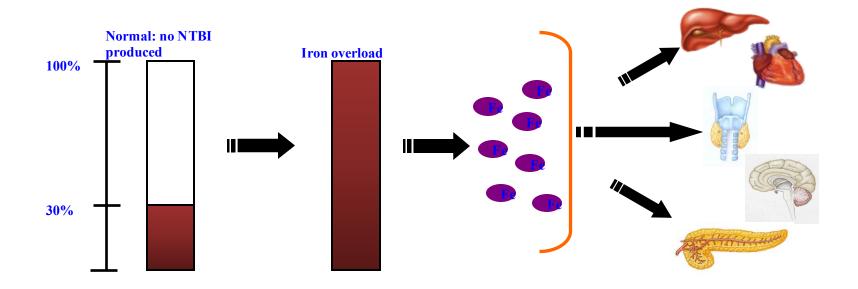
Duration of RBC-TI ≥ 12 weeks^a: sEPO subgroups


Median duration (95% Cl), weeks	Luspatercept	Epoetin alfa	HR (95% CI)
sEPO ≤ 200 U/L	140.1 (112.7 to NE)	77.0 (41.9 to NE)	0.601 (0.348 to 1.038)
sEPO >200-500 U/L	48.3 (26.3 to 93.0)	23.9 (14.9 to NE)	0.624 (0.186 to 2.092)

EOT, end of treatment; NE, not estimable; RBC-TI, red blood cell transfusion independence. aIn ITT responders during weeks 1–EOT.

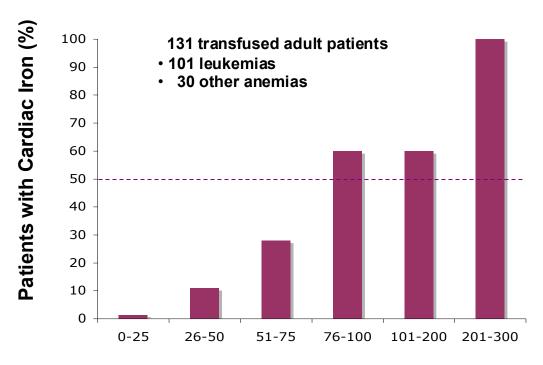
Duration of RBC-TI ≥ 12 weeks^a: RS subgroups

Median duration (95% CI), weeks	Luspatercept	Epoetin alfa	HR (95% CI)
RS+	120.9 (76.4 to NE)	47.0 (36.6 to NE)	0.626 (0.361 to 1.085)
RS-	NE (46.0 to NE)	95.1 (35.3 to NE)	0.492 (0.148 to 1.638)



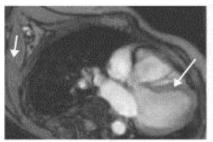
EOT, end of treatment; NE, not estimable; RBC-TI, red blood cell transfusion independence. aIn ITT responders during weeks 1–EOT.

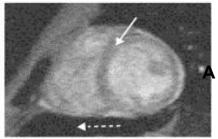
Recent treatments of lower risk MDS


- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk
 MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders

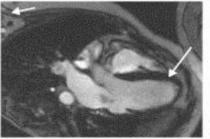
Accumulation of non transferrin bound iron (NTBI or LPI) in organs

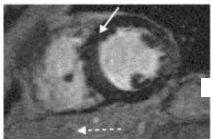
NTBI = non-transferrin bound iron.


Correlation between n° of transfusions and heart iron overload

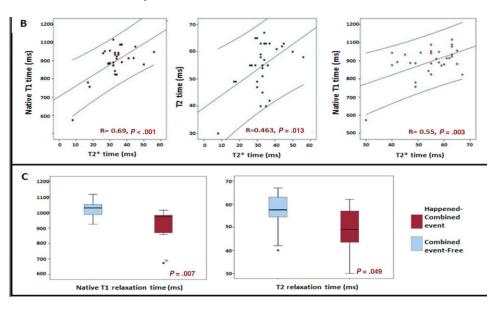


N° of transfused units

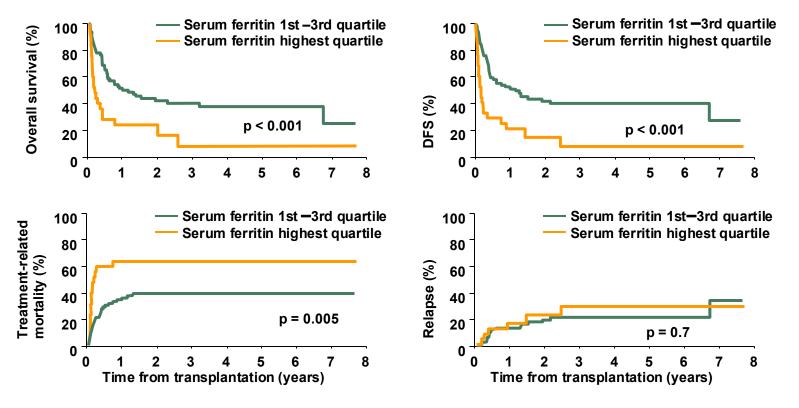

MRI can evaluate iron overload (T2*)


Normal myocardial iron

Severe myocardial iron overload

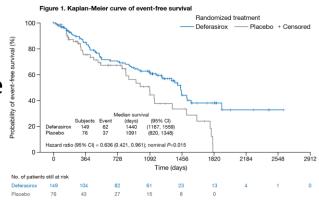


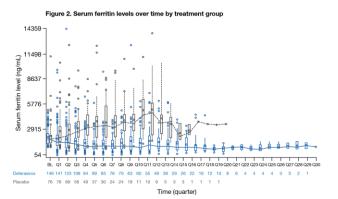
http://oernst.f5lvg.free.fr/liver/iron.html


Usefulness of myocardial T_1 and T_2 mapping with magnetic resonance in transfusion-dependent patients with low-risk myelodysplastic syndrome

Marta Alonso-Fernández-Gatta, a,b,⋄,* Ana Martín-García, a,b,⋄ María Díez-Campelo, Agustín C. Martín-García, a,b Félix López-Cadenas, and Pedro L. Sáncheza,b

Allo SCT results according to serum ferritin level

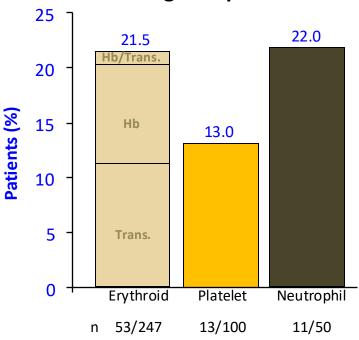



Safety and Efficacy, Including EFS, of Deferasirox Versus Placebo in Iron-Overloaded Patients with Low- and Int-1-Risk MDS: Outcomes from the Randomized, Double-Blind Telesto Study

Angelucci, Ann Int Med, 2020

- 225 pts : Deferasirox (n=149) or Placebo (n=76)
- EFS: composite primary endpoint (cardiac, liver failure transformation to AML, death)
- Median EFS: 1440 day for Deferasirox vs 1091 days

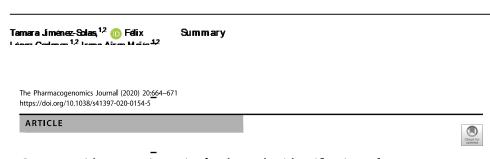
for Placebo: 36.4% risk reduction (P=0.015)



Whiskers mark 10th and 90th percentiles, boxes show lower and upper quartiles, horizontal line shows the median and o represe the mean; values outside 10th-90th percentile are plotted as o

Improvement of cytopenias

Percentage of patients with hematologic response



Hematologic response

Gattermann N, et al. Haematologica. 2012;97:1364-71.

research paper

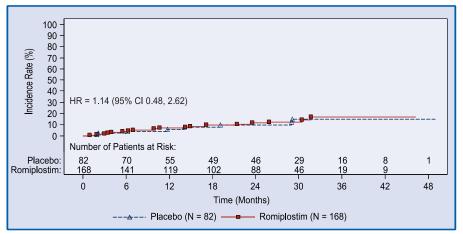
Deferasirox reduces oxidative DNA damage in bone marrow cells from myelodysplastic patients and improves their differentiation capacity

Genome-wide transcriptomics leads to the identification of deregulated genes after deferasirox therapy in low-risk MDS patients

Recent treatments of lower risk MDS

- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders

Safety and Efficacy of Romiplostim in Patients With Lower-Risk Myelodysplastic Syndrome and Thrombocytopenia

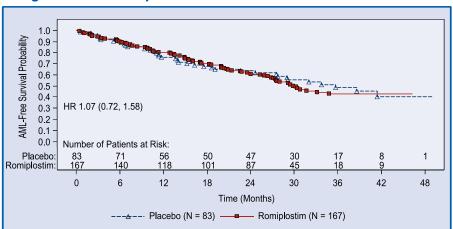

Hagop Kantarjian, Pierre Fenaux, Mikkael A. Sekeres, Pamela S. Becker, Adam Boruchov, David Bowen, Eva Hellstrom-Lindberg, Richard A. Larson, Roger M. Lyons, Petra Muus, Jamile Shammo, Robert Siegel, Kuolung Hu, Janet Franklin, and Dietmar P. Berger

- N=44, lower risk MDS
- platelets <50G/l
- 300 to 1500 ug/week
- Evaluation at week 4
- 50% response
- Transient increase in marrow blasts in 15% of the patients

Treatment with Romiplostim, a Thrombopoietin-Receptor Agonist, in Thrombocytopenic Patients with Low or Intermediate-1 Risk Myelodysplastic Syndrome:
Updated Follow-up Results for Acute Myeloid Leukemia and Survival from a Randomized, Double-Blind, Placebo-Controlled Study

Hagop Kantarjian,¹ Ghuļam Mufti,² Pierre Fenaux,³ Mikkael Sekeres,⁴ Jeffrey Szer,⁵ Uwe Platzbecker,⁵ Andrea Kuendgen,⁻ Gianļuca Gaidano,⁵ Wiesļaw Wiktor-Jedrzejczak,⁵ Anne Meibohm,¹⁰ Angela Lopez,¹¹ Aristoteļes Giagounidis¹²

Figure 2. Incidence of AML, on Treatment and During Long-term Follow-up to March 2013



Includes all randomized patients who received at least 1 dose of the investigational product. Cumulative incidence rates are estimated using the Kaplan-Meier methods.

Total observational time is the time from randomization to the last available long-term contact or end-of-study for patients who did not enter long-term follow-up.

HR, hazard ratio; CI, confidence interval.

Figure 4. AML-Free Survival, on Treatment and During Long-term Follow-up to March 2013

Includes all randomized patients who received at least 1 dose of the investigational product.

Total observational time is the time from randomization to the last available long-term contact or end-of-study for patients who did not enter long-term follow-up.

HR, hazard ratio; CI, confidence interval.

ring, mazara rado, or, cominacino indervar

©Eltrombopag for Low-Risk Myelodysplastic Syndromes With Thrombocytopenia: Interim Results of a Phase-II, Randomized, Placebo-Controlled Clinical Trial (EQOL-MDS)

DOI https://doi.org/10.1200/JCO22.02699

- N=169 (112 vs 57)
- Eltrombopag 50 to 300mg/d
- 42% vs 11 % response
- 63% still responders at 60 months
- Significant bleeding improvement
- 17% vs 17% MDS/AML progression

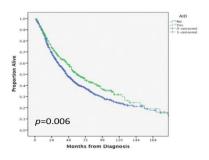
Eltrombopag for myelodysplastic syndromes or chronic myelomonocytic leukaemia with no excess blasts and thrombocytopenia: a French multicentre retrospective real-life study

Comont et al, Brit J Haematol, 2021

Thibault Comont, Mathieu Meunier, 2 Summ

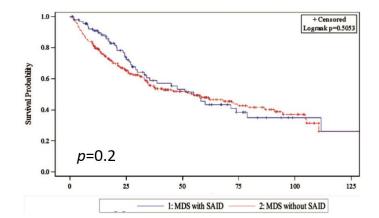
- ELT in 50 MDS and 11 with CMML, with no excess of marrow blasts and platelet <50 G:L
- Platelet response in 47 (77%) patients.
- median duration of response 8 (0–69) months.
- None of the eight still responders who discontinued ELT had relapsed, at a median of 16 (6–23) months after ELT discontinuation.
- Although 36% of the patients were anti-coagulated or anti-aggregated only 10% of patients had Grade ≥3 bleeding events.
- Thrombotic events in six (10%) patients, who all but one had a medical history of arterial or venous thrombosis.
- Progression to AML in four (7%) patients.

Recent treatments of lower risk MDS


- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk
 MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders

Association MDS/CMML - SIAD

- ~ 15-20% of MDS/CMML are associated with Systemic Inflammatory and Autoimmune Diseases (SIAD)
- SIAD often atypical
- SIAD association generally has no impact on prognosis in MDS/CMML patients


Komrokji *et al.* Am J Hematol. 2016

- n = 1408
- 391/1408 (28%) avec
 SIAD, 171/391
 hypothyroidism



Mekinian *et al.* Rheumatology. 2016

- n = 788 MDS/CMML
- 123/788 (16%) with SIAD

Mutation of ten-eleven translocation-2 is associated with increased risk of autoimmune disease in patients with myelodysplastic syndrome

Yoon-Jeong Oh^{1,*}, Dong-Yeop Shin^{2,3,*}, Sang Mee Hwang⁴, Sung-Min Kim⁵, Kyongok Im⁵, Hee Sue Park⁶, Jung-Ah Kim⁶, Yeong Wook Song⁷, Ana Márquez⁸, Javier Martín⁸, Dong-Soon Lee^{5,6}, and Jin Kyun Park⁷

Control SIAD IDH1/2 SRSF2 TET2/IDH TET2 ZRSR2 EZH2 **TP53** KRAS ASXL1 CBL RUNX1 DNMT3A SF3B1 U2AF1 0.1 10 **Odd Ratio**

Leukemia (2021) 35:2720–2724 https://doi.org/10.1038/s41375-021-01152-1

LETTER

Myelodysplastic syndrome

Genomic landscape of MDS/CMML associated with systemic inflammatory and autoimmune disease

Lin-Pierre Zhao 10 1,23 · Maxime Boy 10 2,3 · Célia Azoulay · Emmanuelle Clappier · Marie Sébert · Ludivine Amable · Jihene Klibi · Kamel Benlagha · Marion Espéli · Karl Balabanian 10 · Claude Preudhomme · Alice Marceau-Renaut · Lina Benajiba · Raphaël Itzykson · Arsène Mekinian · Olivier Fain · Antoine Toubert · Pierre Fenaux · Nicolas Dulphy 10 2,3,11 · Lionel Adès 10 1,5

Leukemia Research

journal homepage: www.elsevier.com/locate/leukres

Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia

Jean-Baptiste Fraison^{a,*,1}, Arsène Mekinian^{b,1}, Eric Grignano^c, Jean-Emmanuel Kahn^d, Jean-Benoit Arlet^e, Olivier Decaux^f, Guillaume Denis^g, Anne-Laure Buchdahl^h, Mohamed Omouriⁱ, Gwenola Maigne^j, Achille Aouba^j, Nathalie Leon^k, Sabine Berthier^l, Eric Liozon^m, Sophie Parkⁿ, Claude Gardin^o, Olivier Lortholary^p, Julien Rossignol^c, Pierre Fenaux^q, Olivier Fain^{b,1}, Thorsten Braun^{o,1}

- 22 patients treated with AZA for autoimmune disorders (AID) associated with MDS/CMML
- Response of AID to Azacitidine in 19 patients (86%)
- Reduction or discontinuation of steroids and/or immunosuppressive therapy possible in 16 cases (73%).

Leukemia www.nature.com/leu

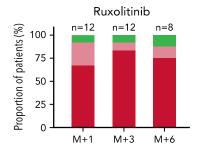
LETTER

MYELODYSPLASTIC NEOPLASM

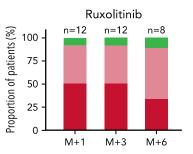
A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML

Arsene Mekinian 10.27 Lin Pierre Zhao 10.27, Sylvie Chevret³, Kristell Desseaux³, Laurent Pascal⁴, Thibaut Comont⁵, Alexandre Maria⁶, Pierre Peterlinˀ, Louis Terriou³, Maud D'Aveni Pineyց, Marie-Pierre Gourin 10.10, Norbert Vey 10.11, Odile Beyne Rauzy⁵, Vincent Grobost¹², Holy Bezanahary¹³, Sophie Dimicoli-Salazar¹⁴, Anne Banos¹⁵, Stefan Wickenhauser¹⁶, Benoit De Renzis¹⁷, Eric Durot 10.18, Shanti Natarajan-Amé¹ց, Laurent Voillat¹o, Fatiha Chermat², Karine Lemaire², Vincent Jachiet¹, Chantal Himberlin¹³, Sylvain Thépot²o, Jose Miguel Torregrosa Diaz²¹, Laurent Frenzel²², Emmanuel Gyan 10.23, Guillaume Denis 10.24, Pierre Hirsch²⁵, Olivier Kosmider 10.26, Lionel Ades 10.27, Olivier Fain¹ and Pierre Fenaux²

- N=30
- 66% response on SAID
- 59% hematological response


UBA 1 mutation (VEXAS) and MDS

- VEXAS: Autoinflammatory disease, X linked, cutaneous lesions, vacuoles in granulocytes,
- MDS in 40% of the cases


TO THE EDITOR:

Ruxolitinib is more effective than other JAK inhibitors to treat VEXAS syndrome: a retrospective multicenter study

Maël Heiblig, ¹ Marcela A. Ferrada, ^{2,*} Matthew T. Koster, ^{3,*} Thomas Barba, ^{4,*} Mathieu Gerfaud-Valentin, ⁵ Arsène Mékinian, ⁶ Henrique Coelho, ⁷ Gaelle Fossard, ¹ Fiorenza Barraco, ¹ Lionel Galicier, ⁸ Boris Bienvenu, ⁸ Pierre Hirsch, ⁹ Guillaume Vial, ¹⁰ Anne Blandine Boutin, ¹¹ Joris Galland, ¹² Guillaume Le Guenno, ¹³ Adrien Bigot, ¹⁴ Kenneth J. Warrington, ³ Tanaz A. Kermani, ¹⁵ Peter C. Grayson, ² Bhavisha A. Patel, ¹⁶ David B. Beck, ^{17,18} Yvan Jamilloux, ^{5,†} Pierre Fenaux, ^{19,†} and Pierre Sujobert²⁰

Leukemia www.nature.com/leu

LETTER

MYELODYSPLASTIC NEOPLASM

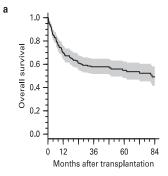
A Phase II prospective trial of azacitidine in steroid-dependent or refractory systemic autoimmune/inflammatory disorders and VEXAS syndrome associated with MDS and CMML

Arsene Mekinian 10.27 Lin Pierre Zhao 10.27, Sylvie Chevret³, Kristell Desseaux³, Laurent Pascal⁴, Thibaut Comont⁵, Alexandre Maria⁶, Pierre Peterlin², Louis Terriou⁶, Maud D'Aveni Piney⁶, Marie-Pierre Gourin 10.0, Norbert Vey 10.11, Odile Beyne Rauzy⁶, Vincent Grobost¹², Holy Bezanahary¹³, Sophie Dimicoli-Salazar¹⁴, Anne Banos¹⁵, Stefan Wickenhauser¹⁶, Benoit De Renzis¹⁷, Eric Durot 10.18, Shanti Natarajan-Amé¹⁶, Laurent Voillat¹⁰, Fatiha Chermat², Karine Lemaire², Vincent Jachiet¹, Chantal Himberlin¹ϐ, Sylvain Thépot²⁰, Jose Miguel Torregrosa Diaz²¹, Laurent Frenzel²², Emmanuel Gyan 10.23, Guillaume Denis 10.24, Pierre Hirsch²⁵, Olivier Kosmider 10.26, Lionel Ades 10.29, Olivier Fain¹ and Pierre Fenaux²

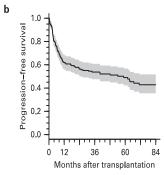
- N=30
- 13 (52% VEXAS patients)
- 75% response on VEXAS symptoms
- 59% hematological response

Recent treatments of lower risk MDS

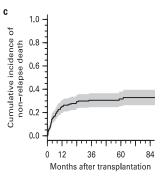
- Lower risk MDS: where is the limit?
- Treatment of anemia of lower risk MDS
- Treatment of thrombocytopenia of lower risk
 MDS
- Chelation therapy?
- Treatment of MDS with autoimmune/autoinflammatory disorders
- Should some lower risk MDS be transplanted?


Bone Marrow Transplantation (2017) **52**, 209–215 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0268-3369/17

www.nature.com/bmt


ORIGINAL ARTICLE

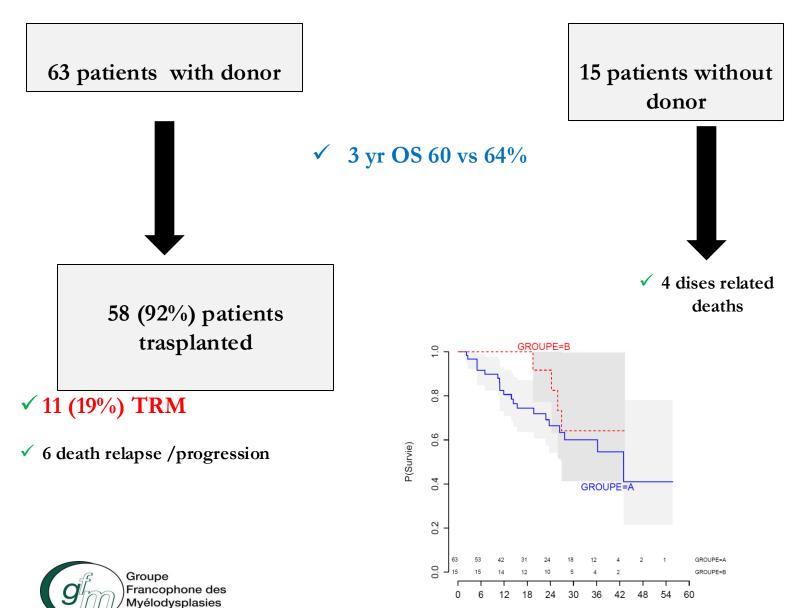
Allogeneic haematopoietic stem cell transplant in patients with lower risk myelodysplastic syndrome: a retrospective analysis on behalf of the Chronic Malignancy Working Party of the EBMT


M Robin¹, R Porcher^{2,2}, W Zinke-Cerwenka⁴, A van Biezen⁵, L Volin⁶, G Mufti⁷, C Craddock⁸, J Finke⁹, C Richard¹⁰, J Passweg¹¹, A Penike¹², J Maerten¹³, G Sucak^{1,8}, T Gedde-Dahl¹³, A Vitek¹⁹, A Nagler¹⁷, D Blaise¹⁸, D Beelen¹⁹, N Maillard²⁰, R Schwerdtfeger²¹, T de Witte²⁸ and N Kroqer²³

No. at risk: 246 156 118 76 63 48 41 28

No. at risk: 246 138 108 68 57 43 33 24

No. at risk: 246 138 108 68 57 43 33 24


Figure 1. OS, PFS and cumulative incidence of NRM. OS, PFS and cumulative incidence of NRM are shown in (**a, b** and **c**), respectively. Grey shaded areas represent the 95% pointwise confidence interval.

TRM post allo SCT Recent GFM experience

- *CPX 351 trial* (median age 62) (Peterlin Lancet Hematol, 2023)
 - -N=29
 - TRM: 5/29 (17%)
- allo risk trial (median age 62) (Robin, ASH 2021)
 - -N = 58
 - TRM: 11/58 (19%)

Allo risk trial (Robin, ASH 2021)

Délai depuis I inclusion (mois)

Should lower risk MDS be transplanted?

NO

RARS with normal karyotype and isolated SF3B1 mutation

YES

- IPSS/ IPSS-R progression
- TP53 mutation with VAF > 20%, or if VAF increases
- Lower risk MDS with del 5q failing LEN

Allo in lower risk MDS?

- Other patients: take into account
 - age, comorbidities
 - donor
 - Response to treatment
 - Importance of cytopenias
 - Mutations ?
 - Progression
 - Patient choice

Department of hematology and immunology of Hospitals St Louis, R Debré, Avicenne APHP and University of Paris

Hôpital St Louis

- 7 services of adult hematology (H Dombret, N Boissel, G Socié, B Arnulf, E Oksenhendler, P Fenaux, C Thiéblemont)
- ICU (E Azoulay)
- pneumology (A Tazi)

Hôpital Robert Debré

- pediatric hématology service (A Baruchel)
- Sickle cell disease unit(M Benkerrou)

Hôpital Avicenne

Adult hematology service (C Gardin)

Groupe Francophone des Myélodysplasies

- Activates clinical trials in MDS (35 centers in France and Belgium
 - + Switzerland)
- Website: www. gfmgroup.org
- Online registry of French MDS cases
- Close cooperation with:
 - a patient support group
 - the International MDS Foundation
 - the European Leukemia Net

Hematological Diseases (ERN EuroBloodNet)

10th Translational Research Conference Myelodysplastic Syndromes,

Malahide (Dublin), Ireland October 16-18, 2026 **#ESHMDS2026**

Overlap MDS/MPN Disorders and Clonal Hematopoiesis

Chairs: Pierre Fenaux, Katharina Götze, Mikkael Sekeres

DEADLINE FOR ABSTRACTS: JULY 6th, 2026

To register and for further information: www.esh.org - info@esh.org